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7.2 Szemerédi’s regularity lemma

More than 20 years ago, in the course of the proof of a major result on
the Ramsey properties of arithmetic progressions, Szemerédi developed a
graph theoretical tool whose fundamental importance has been realized
more and more in recent years: his so-called regularity or uniformity
lemma. Very roughly, the lemma says that all graphs can be approx-
imated by random graphs in the following sense: every graph can be
partitioned, into a bounded number of equal parts, so that most of its
edges run between different parts and the edges between any two parts
are distributed fairly uniformly—just as we would expect it if they had
been generated at random.

In order to state the regularity lemma precisely, we need some defi-
nitions. Let G = (V, E) be a graph, and let X, Y ⊆ V be disjoint. Then
we denote by ‖X, Y ‖ the number of X–Y edges of G, and call ‖X, Y ‖

d(X, Y ) :=
‖X, Y ‖
|X| |Y | d(X, Y )

the density of the pair (X, Y ). (This is a real number between 0 and 1.) density

Given some ε > 0, we call a pair (A, B) of disjoint sets A, B ⊆ V ε-regular
if all X ⊆ A and Y ⊆ B with ε-regular

pair

|X| > ε |A| and |Y | > ε |B|
satisfy ∣∣d(X, Y )− d(A, B)

∣∣ 6 ε .

The edges in an ε-regular pair are thus distributed fairly uniformly: the
smaller ε, the more uniform their distribution.

Consider a partition {V0, V1, . . . , Vk } of V in which one set V0 has
been singled out as an exceptional set . (This exceptional set V0 may exceptional

set
be empty.3) We call such a partition an ε-regular partition of G if it
satisfies the following three conditions:

(i) |V0| 6 ε |V |; ε-regular
partition

(ii) |V1| = . . . = |Vk|;
(iii) all but at most εk2 of the pairs (Vi, Vj) with 1 6 i < j 6 k are

ε-regular.

The role of the exceptional set V0 is one of pure convenience: it
makes it possible to require that all the other partition sets have exactly
the same size. Since condition (iii) affects only the sets V1, . . . , Vk, we

3 So V0 may be an exception also to our terminological rule that partition sets
are not normally empty.
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may think of V0 as a kind of bin: its vertices are disregarded when
the uniformity of the partition is assessed, but there are only few such
vertices.

Lemma 7.2.1. (Regularity Lemma)
For every ε > 0 and every integer m > 1 there exists an integer M[ 9.2.2 ]

such that every graph of order at least m admits an ε-regular partition
{V0, V1, . . . , Vk } with m 6 k 6 M .

The regularity lemma thus says that, given any ε > 0, every graph
has an ε-regular partition into a bounded number of sets. The upper
bound M on the number of partition sets ensures that for large graphs
the partition sets are large too; note that ε-regularity is trivial when
the partition sets are singletons, and a powerful property when they are
large. In addition, the lemma allows us to specify a lower bound m on
the number of partition sets; by choosing m large, we may increase the
proportion of edges running between different partition sets (rather than
inside one), i.e. the proportion of edges that are subject to the regularity
assertion.

Note that the regularity lemma is designed for use with dense
graphs:4 for sparse graphs it becomes trivial, because all densities of
pairs—and hence their differences—tend to zero (Exercise 22).

The remainder of this section is devoted to the proof of the regu-
larity lemma. Although the proof is not difficult, a reader meeting the
regularity lemma here for the first time is likely to draw more insight
from seeing how the lemma is typically applied than from studying the
technicalities of its proof. Any such reader is encouraged to skip to the
start of Section 7.3 now and come back to the proof at his or her leisure.

We shall need the following inequality for reals µ1, . . . , µk > 0 and
e1, . . . , ek > 0: ∑ e2

i

µi
> (

∑
ei)

2∑
µi

. (1)

This follows from the Cauchy-Schwarz inequality
∑

a2
i

∑
b2
i > (

∑
aibi)2

by taking ai :=
√

µi and bi := ei/
√

µi.
Let G = (V, E) be a graph and n := |V |. For disjoint sets A, B ⊆ VG = (V, E)

we definen

q(A, B) :=
|A| |B|

n2
d2(A, B) =

‖A, B‖2
|A| |B|n2

.q(A, B)

For partitions A of A and B of B we set

q(A,B) :=
∑

A′∈A; B′∈B
q(A′, B′) ,q(A,B)

4 Sparse versions do exist, though; see the notes.
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and for a partition P = {C1, . . . , Ck } of V we let

q(P) :=
∑
i<j

q(Ci, Cj) . q(P)

However, if P = {C0, C1, . . . , Ck } is a partition of V with exceptional
set C0, we treat C0 as a set of singletons and define

q(P) := q(P̃) ,

where P̃ :=
{
C1, . . . , Ck

}
∪
{
{ v } : v ∈ C0

}
. P̃

The function q(P) plays a pivotal role in the proof of the regularity
lemma. On the one hand, it measures the uniformity of the partition P:
if P has too many irregular pairs (A, B), we may take the pairs (X, Y ) of
subsets violating the regularity of the pairs (A, B) and make those sets
X and Y into partition sets of their own; as we shall prove, this refines
P into a partition for which q is substantially greater than for P. Here,
‘substantial’ means that the increase of q(P) is bounded below by some
constant depending only on ε. On the other hand,

q(P) =
∑
i<j

q(Ci, Cj)

=
∑
i<j

|Ci| |Cj |
n2

d2(Ci, Cj)

6 1
n2

∑
i<j

|Ci| |Cj |

6 1 .

The number of times that q(P) can be increased by a constant is thus
also bounded by a constant—in other words, after some bounded number
of refinements our partition will be ε-regular! To complete the proof of
the regularity lemma, all we have to do then is to note how many sets
that last partition can possibly have if we start with a partition into m
sets, and to choose this number as our desired bound M .

Let us make all this precise. We begin by showing that, when we
refine a partition, the value of q will not decrease:

Lemma 7.2.2.

(i) Let C, D ⊆ V be disjoint. If C is a partition of C and D is a
partition of D, then q(C,D) > q(C, D).

(ii) If P,P ′ are partitions of V and P ′ refines P, then q(P ′) > q(P).
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Proof . (i) Let C =: {C1, . . . , Ck } and D =: {D1, . . . , D` }. Then

q(C,D) =
∑
i,j

q(Ci, Dj)

=
1
n2

∑
i,j

‖Ci, Dj‖
2

|Ci| |Dj |

>
(1)

1
n2

(∑
i,j ‖Ci, Dj‖

)2∑
i,j |Ci| |Dj |

=
1
n2

‖C, D‖2(∑
i |Ci|

)(∑
j |Dj |

)
= q(C, D) .

(ii) Let P =: {C1, . . . , Ck }, and for i = 1, . . . , k let Ci be the parti-
tion of Ci induced by P ′. Then

q(P) =
∑
i<j

q(Ci, Cj)

6
(i)

∑
i<j

q(Ci, Cj)

6 q(P ′) ,

since q(P ′) =
∑

i q(Ci) +
∑

i<j q(Ci, Cj). ¤

Next, we show that refining a partition by subpartitioning an ir-
regular pair of partition sets increases the value of q a little; since we are
dealing here with a single pair only, the amount of this increase will still
be less than any constant.

Lemma 7.2.3. Let ε > 0, and let C, D ⊆ V be disjoint. If (C, D) is not
ε-regular, then there are partitions C = (C1, C2) of C and D = (D1, D2)
of D such that

q(C,D) > q(C, D) + ε4 |C| |D|
n2

.

Proof . Suppose (C, D) is not ε-regular. Then there are sets C1 ⊆ C and
D1 ⊆ D with |C1| > ε |C| and |D1| > ε |D| such that

|η| > ε (2)

for η := d(C1, D1)− d(C, D). Let C := {C1, C2 } and D := {D1, D2 },η

where C2 := C rC1 and D2 := DrD1.
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Let us show that C and D satisfy the conclusion of the lemma. We
shall write ci := |Ci|, di := |Di|, eij := ‖Ci, Dj‖, c := |C|, d := |D| ci, di, eij

and e := ‖C, D‖. As in the proof of Lemma 7.2.2, c, d, e

q(C,D) =
1
n2

∑
i,j

e2
ij

cidj

=
1
n2

(
e2

11

c1d1
+
∑

i+j>2

e2
ij

cidj

)

>
(1)

1
n2

(
e2

11

c1d1
+

(e− e11)2

cd− c1d1

)
.

By definition of η, we have e11 = c1d1e/cd + ηc1d1, so

n2 q(C,D) > 1
c1d1

(
c1d1e

cd
+ ηc1d1

)2

+
1

cd− c1d1

(
cd− c1d1

cd
e− ηc1d1

)2

=
c1d1e

2

c2d2
+

2eηc1d1

cd
+ η2c1d1

+
cd− c1d1

c2d2
e2− 2eηc1d1

cd
+

η2c2
1d

2
1

cd− c1d1

> e2

cd
+ η2c1d1

>
(2)

e2

cd
+ ε4cd

since c1 > εc and d1 > εd by the choice of C1 and D1. ¤

Finally, we show that if a partition has enough irregular pairs of
partition sets to fall short of the definition of an ε-regular partition,
then subpartitioning all those pairs at once results in an increase of q by
a constant:

Lemma 7.2.4. Let 0 < ε 6 1/4, and let P = {C0, C1, . . . , Ck }
be a partition of V , with exceptional set C0 of size |C0| 6 εn and
|C1| = . . . = |Ck| =: c. If P is not ε-regular, then there is a partition c

P ′ = {C ′0, C
′
1, . . . , C

′
` } of V with exceptional set C ′0, where k 6 ` 6 k4k,

such that |C ′0| 6 |C0|+n/2k, all other sets C ′i have equal size, and

q(P ′) > q(P) + ε5/2 .
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Proof . For all 1 6 i < j 6 k, let us define a partition Cij of Ci andCij
a partition Cji of Cj , as follows. If the pair (Ci, Cj) is ε-regular, we let
Cij := {Ci } and Cji := {Cj }. If not, then by Lemma 7.2.3 there are
partitions Cij of Ci and Cji of Cj with |Cij | = |Cji| = 2 and

q(Cij , Cji) > q(Ci, Cj) + ε4 |Ci| |Cj |
n2

= q(Ci, Cj) +
ε4c2

n2
. (3)

For each i = 1, . . . , k, let Ci be the unique minimal partition of Ci thatCi
refines every partition Cij with j 6= i. (In other words, if we consider two
elements of Ci as equivalent whenever they lie in the same partition set
of Cij for every j 6= i, then Ci is the set of equivalence classes.) Thus,
|Ci| 6 2k−1. Now consider the partition

C := {C0 }∪
k⋃

i=1

CiC

of V , with C0 as exceptional set. Then C refines P, and

k 6 |C| 6 k2k. (4)

Let C0 :=
{
{ v } : v ∈ C0

}
. Now if P is not ε-regular, then for moreC0

than εk2 of the pairs (Ci, Cj) with 1 6 i < j 6 k the partition Cij is
non-trivial. Hence, by our definition of q for partitions with exceptional
set, and Lemma 7.2.2 (i),

q(C) =
∑

16i<j

q(Ci, Cj) +
∑
16i

q(C0, Ci) +
∑
06i

q(Ci)

>
∑

16i<j

q(Cij , Cji) +
∑
16i

q
(
C0, {Ci }

)
+ q(C0)

>
(3)

∑
16i<j

q(Ci, Cj) + εk2 ε4c2

n2
+
∑
16i

q
(
C0, {Ci }

)
+ q(C0)

= q(P) + ε5

(
kc

n

)2

> q(P) + ε5/2 .

(For the last inequality, recall that |C0| 6 εn 6 1
4n, so kc > 3

4n.)
In order to turn C into our desired partition P ′, all that remains to

do is to cut its sets up into pieces of some common size, small enough that
all remaining vertices can be collected into the exceptional set without
making this too large. Let C ′1, . . . , C

′
` be a maximal collection of dis-

joint sets of size d := bc/4kc such that each C ′i is contained in somed
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C ∈ Cr {C0 }, and put C ′0 := V r
⋃

C ′i. Then P ′ = {C ′0, C
′
1, . . . , C

′
` } P ′

is indeed a partition of V . Moreover, P̃ ′ refines C̃, so

q(P ′) > q(C) > q(P) + ε5/2

by Lemma 7.2.2 (ii). Since each set C ′i 6= C ′0 is also contained in one
of the sets C1, . . . , Ck, but no more than 4k sets C ′i can lie inside the
same Cj (by the choice of d), we also have k 6 ` 6 k4k as required.
Finally, the sets C ′1, . . . , C

′
` use all but at most d vertices from each set

C 6= C0 of C. Hence,

|C ′0| 6 |C0|+ d |C|

6
(4)
|C0|+

c

4k
k2k

= |C0|+ ck/2k

6 |C0|+ n/2k.
¤

The proof of the regularity lemma now follows easily by repeated
application of Lemma 7.2.4:

Proof of Lemma 7.2.1. Let ε > 0 and m > 1 be given; without loss ε, m

of generality, ε 6 1/4. Let s := 2/ε5. This number s is an upper bound s

on the number of iterations of Lemma 7.2.4 that can be applied to a
partition of a graph before it becomes ε-regular; recall that q(P) 6 1 for
all partitions P.

There is one formal requirement which a partition {C0, C1, . . . , Ck }
with |C1| = . . . = |Ck| has to satisfy before Lemma 7.2.4 can be (re-)
applied: the size |C0| of its exceptional set must not exceed εn. With
each iteration of the lemma, however, the size of the exceptional set can
grow by up to n/2k. (More precisely, by up to n/2`, where ` is the
number of other sets in the current partition; but ` > k by the lemma,
so n/2k is certainly an upper bound for the increase.) We thus want
to choose k large enough that even s increments of n/2k add up to at
most 1

2εn, and n large enough that, for any initial value of |C0| < k, we
have |C0| 6 1

2εn. (If we give our starting partition k non-exceptional
sets C1, . . . , Ck, we should allow an initial size of up to k for C0, to be
able to achieve |C1| = . . . = |Ck|.)

So let k > m be large enough that 2k−1 > s/ε. Then s/2k 6 ε/2, k

and hence
k +

s

2k
n 6 εn (5)

whenever k/n 6 ε/2, i.e. for all n > 2k/ε.
Let us now choose M . This should be an upper bound on the

number of (non-exceptional) sets in our partition after up to s iterations
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of Lemma 7.2.4, where in each iteration this number may grow from its
current value r to at most r4r. So let f be the function x 7→ x4x, and
take M := max{ fs(k), 2k/ε }; the second term in the maximum ensuresM

that any n > M is large enough to satisfy (5).
We finally have to show that every graph G = (V, E) of order at

least m has an ε-regular partition {V0, V1, . . . , Vk } with m 6 k 6M . So
let G be given, and let n := |G|. If n 6 M , we partition G into k := nn

singletons, choosing V0 := ∅ and |V1| = . . . = |Vk| = 1. This partition of
G is clearly ε-regular. Suppose now that n > M . Let C0 ⊆ V be minimal
such that k divides |V rC0|, and let {C1, . . . , Ck } be any partition of
V rC0 into sets of equal size. Then |C0| < k, and hence |C0| 6 εn by (5).
Starting with {C0, C1, . . . , Ck } we apply Lemma 7.2.4 again and again,
until the partition of G obtained is ε-regular; this will happen after at
most s iterations, since by (5) the size of the exceptional set in the
partitions stays below εn, so the lemma could indeed be reapplied up to
the theoretical maximum of s times. ¤

7.3 Applying the regularity lemma
The purpose of this section is to illustrate how the regularity lemma
is typically applied in the context of (dense) extremal graph theory.
Suppose we are trying to prove that a certain edge density of a graph G
suffices to force the occurrence of some given subgraph H, and that we
have an ε-regular partition of G. The edges inside almost all the pairs
(Vi, Vj) of partition sets are distributed uniformly, although their density
may depend on the pair. But since G has many edges, this density cannot
be zero for all the pairs: some sizeable proportion of the pairs will have
positive density. Now if G is large, then so are the pairs: recall that
the number of partition sets is bounded, and they have equal size. But
any large enough bipartite graph with equal partition sets, fixed positive
edge density (however small!) and a uniform distribution of edges will
contain any given bipartite subgraph5—this will be made precise below.
Thus if enough pairs in our partition of G have positive density that H
can be written as the union of bipartite graphs each arising in one of
those pairs, we may hope that H ⊆ G as desired.

These ideas will be formalized by Lemma 7.3.2 below. We shall then
use this and the regularity lemma to prove the Erdős-Stone theorem
from Section 7.1; another application will be given later, in the proof of
Theorem 9.2.2.

Before we state Lemma 7.3.2, let us note a simple consequence of
the ε-regularity of a pair (A, B): for any subset Y ⊆ B that is not too

5 Readers already acquainted with random graphs may find it instructive to com-
pare this statement with Proposition 11.3.1.




